Tag Archives: Temporal Data

Series Wrap-Up: Reconstructing Time, Truth, and Trust in UK Financial Services Data Platforms

This series explored how UK Financial Services data platforms can preserve temporal truth, reconstruct institutional belief, and withstand regulatory scrutiny at scale. Beginning with foundational concepts such as SCD2 and event modelling, it developed into a comprehensive architectural pattern centred on an audit-grade Bronze layer, non-SCD Silver consumption, and point-in-time defensibility. Along the way, it addressed operational reality, governance, cost, AI integration, and regulatory expectations. This final article brings the work together, offering a structured map of the series and a coherent lens for understanding how modern, regulated data platforms actually succeed. Taken together, this body of work describes what I refer to as a “land it early, manage it early” data platform architecture for regulated industries.

Continue reading

The 2026 UK Financial Services Lakehouse Reference Architecture

An opinionated but practical blueprint for regulated, temporal, multi-domain data platforms: focused on authority, belief, and point-in-time defensibility. This article lays out a reference architecture for UK FS in 2026: not as a rigid blueprint, but as a description of what “good” now looks like in banks, insurers, payments firms, wealth platforms, and capital markets organisations operating under FCA/PRA supervision.

Continue reading

Why Bronze-Level Temporal Fidelity Obsoletes Traditional Data Lineage Tools in Regulated Platforms

This article argues that in regulated financial services, true data lineage cannot be retrofitted through catalogues or metadata overlays. Regulators require temporal lineage: proof of what was known, when it was known, and how it changed. By preserving audit-grade temporal truth at the Bronze layer, lineage becomes an inherent property of the data rather than a post-hoc reconstruction. The article explains why traditional lineage tools often create false confidence and why temporal fidelity is the only regulator-defensible foundation for lineage.

Continue reading

Cost Is a Control: FinOps and Cost Management in Regulated Financial Services Data Platforms

This article positions cost management as a first-class architectural control rather than a post-hoc optimisation exercise. In regulated environments, cost decisions directly constrain temporal truth, optionality, velocity, and compliance. The article explains why FinOps must prioritise predictability, authority, and value alignment over minimisation, and how poorly designed cost pressure undermines regulatory defensibility. By linking cost to long-term value creation and regulatory outcomes, it provides a principled framework for sustaining compliant, scalable data platforms.

Continue reading

Collapsing the Medallion: Layers as Patterns, Not Physical Boundaries

The medallion model was never meant to be a physical storage mandate. It is a pattern language for expressing guarantees about evidence, interpretation, and trust. In mature, regulated platforms, those guarantees increasingly live in contracts, lineage, governance, and tests: not in rigid physical layers. Collapsing the medallion does not weaken regulatory substantiation; it strengthens it by decoupling invariants from layout. This article explains why layers were necessary, why they eventually collapse, and what must never be lost when they do.

Continue reading

Why Transactions Are Events, Not Slowly Changing Dimensions

This article argues that modelling transactions as slowly changing dimensions is a fundamental category error in financial data platforms. Transactions are immutable events that occur once and do not change; what evolves is the organisation’s interpretation of them through enrichment, classification, and belief updates. Applying SCD2 logic to transactions conflates fact with interpretation, corrupts history, and undermines regulatory defensibility. By separating immutable event records from mutable interpretations, platforms become clearer, auditable, and capable of reconstructing past decisions without rewriting reality.

Continue reading

Common Anti-Patterns in Financial Services Data Platforms

Financial Services data platforms rarely fail because of tools, scale, or performance. They fail because architectural decisions are left implicit, applied inconsistently, or overridden under pressure. This article documents the most common and damaging failure modes observed in large-scale FS data platforms: not as edge cases, but as predictable outcomes of well-intentioned instincts applied at the wrong layer. Each pattern shows how trust erodes quietly over time, often remaining invisible until audit, remediation, or regulatory scrutiny exposes the underlying architectural fault lines.

Continue reading

Operationalising Time, Consistency, and Freshness in a Financial Services Data Platform

This article translates the temporal doctrine established in Time, Consistency, and Freshness in a Financial Services Data Platform into enforceable architectural mechanisms. It focuses not on tools or technologies, but on the structural controls required to make time, consistency, and freshness unavoidable properties of a Financial Services (FS) data platform. The objective is simple: ensure that temporal correctness does not depend on developer discipline, operational goodwill, or institutional memory, but is instead enforced mechanically by the platform itself.

Continue reading

Probabilistic & Graph-Based Identity in Regulated Financial Services

This article argues that probabilistic and graph-based identity techniques are unavoidable in regulated Financial Services, but only defensible when tightly governed. Deterministic entity resolution remains the foundation, providing anchors, constraints, and auditability. Probabilistic scores and identity graphs introduce likelihood and network reasoning, not truth, and must be time-bound, versioned, and replayable. When anchored to immutable history, SCD2 discipline, and clear guardrails, these techniques enhance fraud and AML insight; without discipline, they create significant regulatory risk.

Continue reading

Migrating Legacy EDW Slowly-Changing Dimensions to Lakehouse Bronze

From 20-year-old warehouse SCDs to a modern temporal backbone you can trust. This article lays out a practical, regulator-aware playbook for migrating legacy EDW SCD dimensions to a modern SCD2 Bronze layer in a medallion/lakehouse architecture. It covers what you are really migrating (semantics, not just tables), how to treat the EDW as a source system, how to build canonical SCD2 Bronze, how to run both platforms in parallel, and how to prove to auditors and regulators that nothing has been lost or corrupted in the process.

Continue reading

Enterprise Point-in-Time (PIT) Reconstruction: The Regulatory Playbook

This article sets out the definitive regulatory playbook for enterprise Point-in-Time (PIT) reconstruction in UK Financial Services. It explains why PIT is now a supervisory expectation: driven by PRA/FCA reviews, Consumer Duty, s166 investigations, AML/KYC forensics, and model risk, and makes a clear distinction between “state as known” and “state as now known”. Covering SCD2 foundations, entity resolution, precedence versioning, multi-domain alignment, temporal repair, and reproducible rebuild patterns, it shows how to construct a deterministic, explainable PIT engine that can withstand audit, replay history reliably, and defend regulatory outcomes with confidence.

Continue reading

Temporal RAG: Retrieving “State as Known on Date X” for LLMs in Financial Services

This article explains why standard Retrieval-Augmented Generation (RAG) silently corrupts history in Financial Services by answering past questions with present-day truth. It introduces Temporal RAG: a regulator-defensible retrieval pattern that conditions every query on an explicit as_of timestamp and retrieves only from Point-in-Time (PIT) slices governed by SCD2 validity, precedence rules, and repair policies. Using concrete implementation patterns and audit reconstruction examples, it shows how to make LLM retrieval reproducible, evidential, and safe for complaints, remediation, AML, and conduct-risk use cases.

Continue reading

Integrating AI and LLMs into Regulated Financial Services Data Platforms

How AI fits into Bronze/Silver/Gold without breaking lineage, PIT, or SMCR: This article sets out a regulator-defensible approach to integrating AI and LLMs into UK Financial Services data platforms (structurally accurate for 2025/2026). It argues that AI must operate as a governed consumer and orchestrator of a temporal medallion architecture, not a parallel system. By defining four permitted integration patterns, PIT-aware RAG, controlled Bronze embeddings, anonymised fine-tuning, and agentic orchestration, it shows how to preserve lineage, point-in-time truth, and SMCR accountability while enabling practical AI use under PRA/FCA scrutiny.

Continue reading

Foundational Architecture Decisions in a Financial Services Data Platform

This article defines a comprehensive architectural doctrine for modern Financial Services data platforms, separating precursor decisions (what must be true for trust and scale) from foundational decisions (how the platform behaves under regulation, time, and organisational pressure). It explains why ingestion maximalism, streaming-first eventual consistency, transactional processing at the edge, domain-first design, and freshness as a business contract are non-negotiable in FS. Through detailed narrative and explicit anti-patterns, it shows how these decisions preserve optionality, enable regulatory defensibility, support diverse communities, and prevent the systemic failure modes that quietly undermine large-scale financial data platforms.

Continue reading

Time, Consistency, and Freshness in a Financial Services Data Platform

This article explains why time, consistency, and freshness are first-class architectural concerns in modern Financial Services data platforms. It shows how truth in FS is inherently time-qualified, why event time must be distinguished from processing time, and why eventual consistency is a requirement rather than a compromise. By mapping these concepts directly to Bronze, Silver, Gold, and Platinum layers, the article demonstrates how platforms preserve historical truth, deliver reliable current-state views, and enforce freshness as an explicit business contract rather than an accidental outcome.

Continue reading

Event-Driven CDC to Correct SCD2 Bronze in 2025–2026

Broken history often stays hidden until remediation or skilled-person reviews. Why? Event-driven Change Data Capture fundamentally changes how history behaves in a data platform. When Financial Services organisations move from batch ingestion to streaming CDC, long-standing SCD2 assumptions quietly break — often without immediate symptoms. Late, duplicated, partial, or out-of-order events can silently corrupt Bronze history and undermine regulatory confidence. This article sets out what “correct” SCD2 means in a streaming world, why most implementations fail, and how to design Bronze pipelines that remain temporally accurate, replayable, and defensible under PRA/FCA scrutiny in 2025–2026.

Continue reading

Golden-Source Resolution, Multi-Source Precedence, and Regulatory Point-in-Time Reporting on SCD2 Bronze

Why Deterministic Precedence Is the Line Between “Data Platform” and “Regulatory Liability”. Modern UK Financial Services organisations ingest customer, account, and product data from 5–20 different systems of record, each holding overlapping and often conflicting truth. Delivering a reliable “Customer 360” or “Account 360” requires deterministic, audit-defensible precedence rules, survivorship logic, temporal correction workflows, and regulatory point-in-time (PIT) reconstructions: all operating on an SCD2 Bronze layer. This article explains how mature banks resolve multi-source conflicts, maintain lineage, rebalance history when higher-precedence data arrives late, and produce FCA/PRA-ready temporal truth. It describes the real patterns used in Tier-1 institutions, and the architectural techniques required to make them deterministic, scalable, and regulator-defensible.

Continue reading

Entity Resolution & Matching at Scale on the Bronze Layer

Entity resolution has become one of the hardest unsolved problems in modern UK Financial Services data platforms. This article sets out a Bronze-layer–anchored approach to resolving customers, accounts, and parties at scale using SCD2 as the temporal backbone. It explains how deterministic, fuzzy, and probabilistic matching techniques combine with blocking, clustering, and survivorship to produce persistent, auditable entity identities. By treating entity resolution as platform infrastructure rather than an application feature, firms can build defensible Customer 360 views, support point-in-time reconstruction, and meet growing FCA and PRA expectations.

Continue reading