Tag Archives: Financial Crime

Why UK Financial Services Data Platforms Must Preserve Temporal Truth for Regulatory Compliance

A Regulatory Perspective (2025–2026). UK Financial Services regulation in 2025–2026 increasingly requires firms to demonstrate not just what is true today, but what was known at the time decisions were made. Across Consumer Duty, s166 reviews, AML/KYC, model risk, and operational resilience, regulators expect deterministic reconstruction of historical belief, supported by traceable evidence. This article explains where that requirement comes from, why traditional current-state platforms fail under scrutiny, and why preserving temporal truth inevitably drives architectures that capture change over time as a foundational control, not a technical preference.

Continue reading

From Graph Insight to Action: Decisions, Controls & Remediation in Financial Services Platforms

This article argues that financial services platforms fail not from lack of insight, but from weak architecture between detection and action. Graph analytics and models generate signals, not decisions. Collapsing the two undermines accountability, auditability, and regulatory defensibility. By separating signals, judgements, and decisions; treating decisions as time-qualified data; governing controls as executable policy; and enabling deterministic replay for remediation, platforms can move from reactive analytics to explainable, defensible action. In regulated environments, what matters is not what was known: but what was decided, when, and why.

Continue reading

Networks, Relationships & Financial Crime Graphs on the Bronze Layer

Financial crime rarely appears in isolated records; it emerges through networks of entities, relationships, and behaviours over time. This article explains why financial crime graphs must be treated as foundational, temporal structures anchored near the Bronze layer of a regulated data platform. It explores how relationships are inferred, versioned, and governed, why “known then” versus “known now” matters, and how poorly designed graphs undermine regulatory defensibility. Done correctly, crime graphs provide explainable, rebuildable network intelligence that stands up to scrutiny years later.

Continue reading

Probabilistic & Graph-Based Identity in Regulated Financial Services

This article argues that probabilistic and graph-based identity techniques are unavoidable in regulated Financial Services, but only defensible when tightly governed. Deterministic entity resolution remains the foundation, providing anchors, constraints, and auditability. Probabilistic scores and identity graphs introduce likelihood and network reasoning, not truth, and must be time-bound, versioned, and replayable. When anchored to immutable history, SCD2 discipline, and clear guardrails, these techniques enhance fraud and AML insight; without discipline, they create significant regulatory risk.

Continue reading

Using SCD2 in the Bronze Layer with a Non-SCD2 Silver Layer: A Modern Data Architecture Pattern for UK Financial Services

UK Financial Services firms increasingly implement SCD2 history in the Bronze layer while providing simplified, non-SCD2 current-state views in the Silver layer. This pattern preserves full historical auditability for FCA/PRA compliance and regulatory forensics, while delivering cleaner, faster, easier-to-use datasets for analytics, BI, and data science. It separates “truth” from “insight,” improves governance, supports Data Mesh models, reduces duplicated logic, and enables deterministic rebuilds across the lakehouse. In regulated UK Financial Services today, it is the only pattern I have seen that satisfies the full, real-world constraint set with no material trade-offs.

Continue reading