Tag Archives: Actuarial Data

Foundational Architecture Decisions in a Financial Services Data Platform

This article defines a comprehensive architectural doctrine for modern Financial Services data platforms, separating precursor decisions (what must be true for trust and scale) from foundational decisions (how the platform behaves under regulation, time, and organisational pressure). It explains why ingestion maximalism, streaming-first eventual consistency, transactional processing at the edge, domain-first design, and freshness as a business contract are non-negotiable in FS. Through detailed narrative and explicit anti-patterns, it shows how these decisions preserve optionality, enable regulatory defensibility, support diverse communities, and prevent the systemic failure modes that quietly undermine large-scale financial data platforms.

Continue reading

Time, Consistency, and Freshness in a Financial Services Data Platform

This article explains why time, consistency, and freshness are first-class architectural concerns in modern Financial Services data platforms. It shows how truth in FS is inherently time-qualified, why event time must be distinguished from processing time, and why eventual consistency is a requirement rather than a compromise. By mapping these concepts directly to Bronze, Silver, Gold, and Platinum layers, the article demonstrates how platforms preserve historical truth, deliver reliable current-state views, and enforce freshness as an explicit business contract rather than an accidental outcome.

Continue reading

Using SCD2 in the Bronze Layer with a Non-SCD2 Silver Layer: A Modern Data Architecture Pattern for UK Financial Services

UK Financial Services firms increasingly implement SCD2 history in the Bronze layer while providing simplified, non-SCD2 current-state views in the Silver layer. This pattern preserves full historical auditability for FCA/PRA compliance and regulatory forensics, while delivering cleaner, faster, easier-to-use datasets for analytics, BI, and data science. It separates “truth” from “insight,” improves governance, supports Data Mesh models, reduces duplicated logic, and enables deterministic rebuilds across the lakehouse. In regulated UK Financial Services today, it is the only pattern I have seen that satisfies the full, real-world constraint set with no material trade-offs.

Continue reading