Tag Archives: Temporal RAG

Series Wrap-Up: Reconstructing Time, Truth, and Trust in UK Financial Services Data Platforms

This series explored how UK Financial Services data platforms can preserve temporal truth, reconstruct institutional belief, and withstand regulatory scrutiny at scale. Beginning with foundational concepts such as SCD2 and event modelling, it developed into a comprehensive architectural pattern centred on an audit-grade Bronze layer, non-SCD Silver consumption, and point-in-time defensibility. Along the way, it addressed operational reality, governance, cost, AI integration, and regulatory expectations. This final article brings the work together, offering a structured map of the series and a coherent lens for understanding how modern, regulated data platforms actually succeed. Taken together, this body of work describes what I refer to as a “land it early, manage it early” data platform architecture for regulated industries.

Continue reading

Building Regulator-Defensible Enterprise RAG Systems (FCA/PRA/SMCR)

This article defines what regulator-defensible enterprise Retrieval-augmented generation (RAG) looks like in Financial Services (at least in 2025–2026). Rather than focusing on model quality, it frames RAG through the questions regulators actually ask: what information was used, can the answer be reproduced, who is accountable, and how risk is controlled. It sets out minimum standards for context provenance, audit-grade logging, temporal and precedence-aware retrieval, human-in-the-loop escalation, and replayability. The result is a clear distinction between RAG prototypes and enterprise systems that can survive PRA/FCA and SMCR scrutiny.

Continue reading

Temporal RAG: Retrieving “State as Known on Date X” for LLMs in Financial Services

This article explains why standard Retrieval-Augmented Generation (RAG) silently corrupts history in Financial Services by answering past questions with present-day truth. It introduces Temporal RAG: a regulator-defensible retrieval pattern that conditions every query on an explicit as_of timestamp and retrieves only from Point-in-Time (PIT) slices governed by SCD2 validity, precedence rules, and repair policies. Using concrete implementation patterns and audit reconstruction examples, it shows how to make LLM retrieval reproducible, evidential, and safe for complaints, remediation, AML, and conduct-risk use cases.

Continue reading