Tag Archives: Microsoft Fabric

Databricks vs Snowflake vs Fabric vs Other Tech with SCD2 Bronze: Choosing the Right Operating Model

Choosing the right platform for implementing SCD2 in the Bronze layer is not a tooling decision but an operating model decision. At scale, SCD2 Bronze forces trade-offs around change capture, merge frequency, physical layout, cost governance, and long-term analytics readiness. Different platforms optimise for different assumptions about who owns those trade-offs. This article compares Databricks, Snowflake, Microsoft Fabric, and alternative technologies through that lens, with practical guidance for Financial Services organisations designing SCD2 Bronze layers that must remain scalable, auditable, and cost-effective over time.

Continue reading

From SCD2 Bronze to a Non-SCD Silver Layer in Other Tech (Iceberg, Hudi, BigQuery, Fabric)

Modern data platforms consistently separate historical truth from analytical usability by storing full SCD2 history in a Bronze layer and exposing a simplified, current-state Silver layer. Whether using Apache Iceberg, Apache Hudi, Google BigQuery, or Microsoft Fabric, the same pattern applies: Bronze preserves immutable, auditable change history, while Silver removes temporal complexity to deliver one row per business entity. Each platform implements this differently, via snapshots, incremental queries, QUALIFY, or Delta MERGE, but the architectural principle remains universal and essential for regulated environments.

Continue reading

Databricks vs Snowflake vs Microsoft Fabric: Positioning the Future of Enterprise Data Platforms

This article extends the Databricks vs Snowflake comparison to include Microsoft Fabric, exploring the platforms’ philosophical roots, architectural approaches, and strategic trade-offs. It positions Fabric not as a direct competitor but as a consolidation play for Microsoft-centric organisations, and introduces Microsoft Purview as the governance layer that unifies divergent estates. Drawing on real enterprise patterns where Databricks underpins engineering, Fabric drives BI adoption, and functional teams risk fragmentation, the piece outlines the “Build–Consume–Govern” model and a phased transition plan. The conclusion emphasises orchestration across platforms, not choosing a single winner, as the path to a governed, AI-ready data estate.

Continue reading